| View previous topic :: View next topic   | 
	
	
	
		| Author | 
		Message | 
	
	
		keith
 
 
  Joined: 19 Sep 2005 Posts: 3355 Location: near Detroit, Michigan, USA
  | 
		
			
				 Posted: Mon Jun 30, 2008 11:39 am    Post subject: Very Hard + | 
				     | 
			 
			
				
  | 
			 
			
				Since today's VH wasn't, here is an extra puzzle for you. 	  | Code: | 	 		  Puzzle: M4109527sh(15)
 
+-------+-------+-------+
 
| . 2 . | . . . | . 6 . | 
 
| . 3 . | . 6 4 | . 5 . | 
 
| . 5 6 | . 7 . | 3 4 . | 
 
+-------+-------+-------+
 
| 5 . . | . 2 1 | . . 4 | 
 
| 6 . . | 5 . 7 | . . 1 | 
 
| . . . | 8 9 . | . . . | 
 
+-------+-------+-------+
 
| . 9 7 | . 3 . | 4 1 . | 
 
| . 6 . | . 8 5 | . 9 . | 
 
| . 4 . | . . . | . 2 . | 
 
+-------+-------+-------+ | 	  The Menneske rating still has me baffled.  Usually I can solve this level with one or two advanced moves.  This one took more.
 
 
Keith | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Marty R.
 
 
  Joined: 12 Feb 2006 Posts: 5770 Location: Rochester, NY, USA
  | 
		
			
				 Posted: Mon Jun 30, 2008 4:46 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				1) After basics, there was an almost Type 6 UR with a strong link on each candidate, making two eliminations
 
 
2) W-Wing
 
 
3) XY-Chain | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Steve R
 
 
  Joined: 24 Oct 2005 Posts: 289 Location: Birmingham, England
  | 
		
			
				 Posted: Mon Jun 30, 2008 6:30 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | Code: | 	 		  +-------------------------------------+
 
| 1479 2 148  | 139 5 38 | 18  6 789  |
 
| 179  3 18   | 129 6 4  | 128 5 2789 |
 
| 19   5 6    | 129 7 28 | 3   4 289  |
 
----------------------------------------
 
| 5    7 39   | 36  2 1  | 69   8 4   |
 
| 6    8 29   | 5   4 7  | 29   3 1   |
 
| 234  1 234  | 8   9 36 | 5    7 26  |
 
---------------------------------------
 
| 8    9 7    | 26  3 26 | 4    1 5   |
 
| 12   6 12   | 4   8 5  | 7    9 3   |
 
| 3    4 5    | 7   1 9  | 68   2 68  |
 
+-------------------------------------+ | 	  
 
Following Marty, I looked for a UR. One is in r12c37.
 
 
 	  | Code: | 	 		  +--------------------------------------+
 
| 1479 2 18+4 | 139 5 38 | 18+  6 789  |
 
| 179  3 18+  | 129 6 4  | 18+2 5 2789 |
 
| 19   5 6    | 129 7 28 | 3    4 289  |
 
----------------------------------------
 
| 5    7 39   | 36  2 1  | 69   8 4    |
 
| 6    8 29   | 5   4 7  | 29   3 1    |
 
| 24   1 234  | 8   9 36 | 5    7 26   |
 
----------------------------------------
 
| 8    9 7    | 26  3 26 | 4    1 5    |
 
| 12   6 12   | 4   8 5  | 7    9 3    |
 
| 3    4 5    | 7   1 9  | 68   2 68   |
 
+--------------------------------------+ | 	  
 
As the two cells in the left-hand corners are conjugate with respect to 8, 8 may be eliminated from r3c7. Equally, those in the right-hand corners are conjugate with respect to 1 so this is eliminated from r1c3.
 
 
 	  | Code: | 	 		  +---------------------------------------+
 
| 179+4 2 48  | 19+3 5 38 | 18  6 79+8  |
 
| 179+  3 18  | 129+ 6 4  | 12  5 279+8 |
 
| 19+   5 6   | 129+ 7 28 | 3   4 29+8  |
 
-----------------------------------------
 
| 5     7 39  | 36   2 1  | 69  8 4     |
 
| 6     8 29  | 5    4 7  | 29  3 1     |
 
| 24    1 234 | 8    9 36 | 5   7 26    |
 
-----------------------------------------
 
| 8     9 7   | 26   3 26 | 4   1 5     |
 
| 12    6 12  | 4    8 5  | 7   9 3     |
 
| 3     4 5   | 7    1 9  | 68  2 68    |
 
+---------------------------------------+ | 	  
 
There is now a (1279) MUG in r123c149. If c9b3 contains 8, r1c7 must be 1. The only other possibility is that r1c14 contains 3 or 4. In this case a (348) locked set is formed with r1c36 and again r1c7 is 1. Placing 1 here solves the puzzle.
 
 
I’m beginning to wonder if MUGs are rather more common than first thought. Perhaps it is a matter of looking for them.
 
 
Steve | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		cgordon
 
 
  Joined: 04 May 2007 Posts: 769 Location: ontario, canada
  | 
		
			
				 Posted: Mon Jun 30, 2008 7:35 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				
 
 
Marty: What is an ALMOST Type 6 UR?  Sounds like almost pregnant?  
 
 
I found a Type 4 UR with a diagonal variant.  
 
 
Couldn't get no further. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Asellus
 
 
  Joined: 05 Jun 2007 Posts: 865 Location: Sonoma County, CA, USA
  | 
		
			
				 Posted: Mon Jun 30, 2008 9:04 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				I, too, used that 18 UR, though in a different way: exploiting the 4=2 induced strong link.  The grid (without the <3> in r6c1 as shown by Steve):
 
 	  | Code: | 	 		  +---------------+------------+--------------+ 
 
| 1-479 2 a148  | 139  5  38 | 18   6  789  | 
 
| 179   3  18   | 129  6  4  |b128  5 c2789 | 
 
| 19    5  6    | 129  7  28 | 3    4 c289  | 
 
+---------------+------------+--------------+ 
 
| 5     7  39   | 36   2  1  | 69   8  4    | 
 
| 6     8  29   | 5    4  7  | 29   3  1    | 
 
|e24    1  23-4 | 8    9  36 | 5    7 d26   | 
 
+---------------+------------+--------------+
 
| 8     9  7    | 26   3  26 | 4    1  5    | 
 
| 12    6  12   | 4    8  5  | 7    9  3    | 
 
| 3     4  5    | 7    1  9  | 68   2  68   | 
 
+---------------+------------+--------------+ | 	  
 
The UR strong link, ab, is followed by the c9 grouped strong link, cd, and the bivalue strong link, e, to eliminate <4>s as shown.  Or,
 
UR[(4)r1c3=(2)r2c7] - (2)r23c9=(2)r6c9 - (2=4)r6c1; r1c1|r6c3<>4
 
 
After that, a 6-cell XY-Chain finished things off. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Asellus
 
 
  Joined: 05 Jun 2007 Posts: 865 Location: Sonoma County, CA, USA
  | 
		
			
				 Posted: Mon Jun 30, 2008 9:13 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				| By the way, basic Medusa starting on <3>s leads to a Medusa Wrap in <8> and solves the puzzle in "one" step.  It's always interesting to find a Medusa Wrap, I think. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Marty R.
 
 
  Joined: 12 Feb 2006 Posts: 5770 Location: Rochester, NY, USA
  | 
		
			
				 Posted: Mon Jun 30, 2008 9:14 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | Quote: | 	 		  | Marty: What is an ALMOST Type 6 UR? Sounds like almost pregnant?  | 	  
 
Craig, a Type 6 is with the bivalue cells on the diagonals and with one of the candidates being an X-Wing. When that occurs, each bivalue cell is solved with that X-Wing number.
 
 
The 18 cells in boxes 1 and 3 are diagonal, but there's no X-Wing, so I call it an "almost" Type 6 because the pattern is there. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		keith
 
 
  Joined: 19 Sep 2005 Posts: 3355 Location: near Detroit, Michigan, USA
  | 
		
			
				 Posted: Mon Jun 30, 2008 9:45 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | Asellus wrote: | 	 		  | By the way, basic Medusa starting on <3>s leads to a Medusa Wrap in <8> and solves the puzzle in "one" step.  It's always interesting to find a Medusa Wrap, I think. | 	  I found a chain by Medusa coloring on <368>.  Here it is: 	  | Code: | 	 		  +-------------+-------------+-------------+
 
| 79  2   4   | 139 5  3r8g | 18g 6   789 | 
 
| 179 3   8   | 19  6   4   | 12  5   27  | 
 
| 19  5   6   | 129 7   28  | 3   4   89  | 
 
+-------------+-------------+-------------+
 
| 5   7   39  | 36  2   1   | 69  8   4   | 
 
| 6   8   29  | 5   4   7   | 29  3   1   | 
 
| 4   1   23  | 8   9  3g6r | 5   7   26g | 
 
+-------------+-------------+-------------+
 
| 8   9   7   | 26  3   26  | 4   1   5   | 
 
| 2   6   1   | 4   8   5   | 7   9   3   | 
 
| 3   4   5   | 7   1   9   |6g8r 2   6r8 | 
 
+-------------+-------------+-------------+ | 	  Starting in R1C6, the chain is in C6, R6, C9, R9, and C7, resulting in two <8g> in R1.  r (red) must be true.
 
 
This is one chain I picked out of the Medusa net.   Others are possible.
 
 
Keith | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		cgordon
 
 
  Joined: 04 May 2007 Posts: 769 Location: ontario, canada
  | 
		
			
				 Posted: Mon Jun 30, 2008 10:11 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Marty:  Lost you there mate because I used the diagaonal variant of a Type 4 UR.  
 
 	  | Code: | 	 		              
 
+-------+------+-------+    
 
| . .148| . . .|18 . . |
 
| . . 18| . . .|128. . |    
 
+-------+-------+------+
 
 | 	  
 
Thus - unless I am wrong - there are only two 1's in C7 so we can remove the 1 from <148>
 
And there are only two 8's in C3 ao we can remove 8 from <128>
 
------------------
 
 
Is that your type 6 UR?
 
I recently discussed this with Keith.
 
 
I still can't understand why a Type 5 UR is simply a minor diagonal variation of a Type 2 UR.  Whereas the diagonal variant of the Type 4 UR is still a Type 4 - despite the fact that its resolution is radically different.  You could of course argue that all all UR's have the same undelying logic. In which case - why bother with any Types. 
 
 
Edited note:  Sorry Marty - your post appeared after I posted mine.
 
I will read and digest. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		keith
 
 
  Joined: 19 Sep 2005 Posts: 3355 Location: near Detroit, Michigan, USA
  | 
		
			
				 Posted: Mon Jun 30, 2008 10:43 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | cgordon wrote: | 	 		  Marty:  Lost you there mate because I used the diagaonal variant of a Type 4 UR.  
 
 	  | Code: | 	 		              
 
+-------+------+-------+    
 
| . .148| . . .|18 . . |
 
| . . 18| . . .|128. . |    
 
+-------+-------+------+
 
 | 	  
 
Thus - unless I am wrong - there are only two 1's in C7 so we can remove the 1 from <148>
 
And there are only two 8's in C3 ao we can remove 8 from <128>
 
------------------
 
 
Is that your type 6 UR?
 
I recently discussed this with Keith.
 
 
I still can't understand why a Type 5 UR is simply a minor diagonal variation of a Type 2 UR.  Whereas the diagonal variant of the Type 4 UR is still a Type 4 - despite the fact that its resolution is radically different.  You could of course argue that all all UR's have the same undelying logic. In which case - why bother with any Types. 
 
 
Sorry for the rant. | 	  Craig,
 
 
Why don't you take a look at the classifications on Sudopedia,
 
 
http://www.sudopedia.org/wiki/Uniqueness_Test
 
 
and also those that are on Ruud's Sudocue (nightmare) site,
 
 
http://www.sudocue.net/guide.php#UR
 
 
Maybe we should rewrite the classifications!
 
 
Keith | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		storm_norm
 
 
  Joined: 18 Oct 2007 Posts: 1741
 
  | 
		
			
				 Posted: Tue Jul 01, 2008 5:32 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | Code: | 	 		  .------------------.------------------.------------------.
 
| 1479  2     148  | 139   5     38   | 18    6     789  |
 
| 179   3     18   | 129   6     4    | 128   5     2789 |
 
| 19    5     6    | 129   7     28   | 3     4     289  |
 
:------------------+------------------+------------------:
 
| 5     7     39   | 36    2     1    | 69    8     4    |
 
| 6     8     29   | 5     4     7    | 29    3     1    |
 
| 24    1     234  | 8     9     36   | 5     7     26   |
 
:------------------+------------------+------------------:
 
| 8     9     7    | 26    3     26   | 4     1     5    |
 
| 12    6     12   | 4     8     5    | 7     9     3    |
 
| 3     4     5    | 7     1     9    | 68    2     68   |
 
'------------------'------------------'------------------' | 	  
 
 
we have had the URs and MUGs... how about a strictly chain method??
 
starting with this w-wing with extended pincers...
 
visually...
 
 
 
 
 
in notation...(2=6)r7c4-(6)r7c6=(6)r6c6-(6=2)r6c9-(2)r5c7=(2)r2c7; r2c4<>2
 
leads too...
 
 
 	  | Code: | 	 		  .------------------.------------------.------------------.
 
| 1479  2     148  | 139   5     38   | 18    6     789  |
 
| 179   3     18   | 19    6     4    | 128   5     2789 |
 
| 19    5     6    | 129   7     28   | 3     4     89   |
 
:------------------+------------------+------------------:
 
| 5     7     39   | 36    2     1    | 69    8     4    |
 
| 6     8     29   | 5     4     7    | 29    3     1    |
 
| 24    1     234  | 8     9     36   | 5     7     26   |
 
:------------------+------------------+------------------:
 
| 8     9     7    | 26    3     26   | 4     1     5    |
 
| 12    6     12   | 4     8     5    | 7     9     3    |
 
| 3     4     5    | 7     1     9    | 68    2     68   |
 
'------------------'------------------'------------------' | 	  
 
 
xy-wing{1,8,9} removes 8 from r2c79 (ehem... 3 cell xy-chain)
 
xy-wing{1,8,9} removes 1 from r1c13" "
 
 
leads too...
 
 	  | Code: | 	 		  .---------------.---------------.---------------.
 
| 79   2    4   | 139  5   #38  |#18   6    789 |
 
| 179  3    8   | 19   6    4   |#12   5   -279 |
 
| 19   5    6   | 129  7    28  | 3    4    89  |
 
:---------------+---------------+---------------:
 
| 5    7    39  | 36   2    1   | 69   8    4   |
 
| 6    8    29  | 5    4    7   | 29   3    1   |
 
| 4    1    23  | 8    9   #36  | 5    7   #26  |
 
:---------------+---------------+---------------:
 
| 8    9    7   | 26   3    26  | 4    1    5   |
 
| 2    6    1   | 4    8    5   | 7    9    3   |
 
| 3    4    5   | 7    1    9   | 68   2    68  |
 
'---------------'---------------'---------------' | 	  
 
 
the marked xy-chain eliminates the 2 from r2c9
 
{26}-{36}-{38}-{18}-{12}...done. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		cgordon
 
 
  Joined: 04 May 2007 Posts: 769 Location: ontario, canada
  | 
		
			
				 Posted: Tue Jul 01, 2008 6:36 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Keith: I looked at the first of those references for UR's and am confused by the first example for Type 6 - since there appear to be strong links on all the rows and columns.  
 
 
But regardless of this - is my assumption above correct?  That is: are we OK with a diagonal Type 4 UR where there are only 2 of the UR pair candidates in a row or column. 
 
 
Meanwhile, it looks like a Type 6 UR is (as Marty noted) a diagonal variant of a Type 4.  
 
 
I would have come up with a more rational classification - but I have decided not to change it.    
 
 
Seems amazing how many times the Type 4's or 6's crop up. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		 |