| View previous topic :: View next topic   | 
	
	
	
		| Author | 
		Message | 
	
	
		daj95376
 
 
  Joined: 23 Aug 2008 Posts: 3854
 
  | 
		
			
				 Posted: Wed Jun 10, 2009 7:57 pm    Post subject: Set XY_03 Puzzle 015 | 
				     | 
			 
			
				
  | 
			 
			
				Probably easy for an XY_nn puzzle.
 
 
 	  | Code: | 	 		   +-----------------------+
 
 | 9 . . | . . 5 | 6 . 8 |
 
 | . 5 . | . . 2 | 1 . . |
 
 | . . . | 8 1 . | . . . |
 
 |-------+-------+-------|
 
 | . . 5 | 7 . 8 | 9 . . |
 
 | . . 9 | . 5 . | 2 . . |
 
 | 3 6 . | 2 . 1 | 8 . . |
 
 |-------+-------+-------|
 
 | 5 9 . | 6 2 7 | 4 . . |
 
 | . . . | . . . | . . . |
 
 | 6 . . | . . . | . . 1 |
 
 +-----------------------+
 
 | 	  
 
Play this puzzle online at the Daily Sudoku site | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		storm_norm
 
 
  Joined: 18 Oct 2007 Posts: 1741
 
  | 
		
			
				 Posted: Thu Jun 11, 2009 6:56 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				this grid is after the xy-wing {3,4,6} that very nicely removes the 3's from r89c5, in the UR pattern on {4,8} in r89c35...  notice the xy-wing that is formed from the extra candidates?
 
 	  | Code: | 	 		  .---------------.---------------.---------------.
 
| 9    1    34  | 34   7    5   | 6    2    8   |
 
| 8    5    36  | 9    36   2   | 1    47   47  |
 
| 24   7    246 | 8    1    46  | 3    5    9   |
 
:---------------+---------------+---------------:
 
| 124 {24}  5   | 7    36   8   | 9    13   46  |
 
| 17   8    9   | 34   5    46  | 2    13   67  |
 
| 3    6  {47}  | 2    9    1   | 8    47   5   |
 
:---------------+---------------+---------------:
 
| 5    9    1   | 6    2    7   | 4    8    3   |
 
| 47   3  {7}48 | 1    48   9   | 5    6    2   |
 
| 6   -24 {2}48 | 5    48   3   | 7    9    1   |
 
'---------------'---------------'---------------' | 	  
 
with the help of the UR{4,8}, the xy-wing {2,4,7} is formed and eliminates the 2 in r9c2 to solve it.
 
 
or...
 
 
UR48[(2)r9c3 = (7)r8c3] - (7=4)r6c3 - (4=2)r4c2; r9c2 <> 2 | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		tlanglet
 
 
  Joined: 17 Oct 2007 Posts: 2468 Location: Northern California Foothills
  | 
		
			
				 Posted: Thu Jun 11, 2009 1:05 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				My first step was an extended xyz-wing 346 in r4c5 to delete 3 in r5c6. The extension is: If r4c5=6 then r2c5=3 so r89c5<>3 and r9c6=3 which means r5c6<>3. Or, as a chain: (6)r4c5 - (6=3)r2c5 - (3)r89c5 = (3)r9c6; r5c6<>3. This step resulted in identical code as posted by Norm after his initial xy-wing 346.
 
 
Then I noticed the UR48 (also described by Norm) which provided the subset 27 to form the xy-wing 247 with pivot 27 in r89c3 that deleted the 4 in r4c2.
 
 
 Ted | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		arkietech
 
 
  Joined: 31 Jul 2008 Posts: 1834 Location: Northwest Arkansas USA
  | 
		
			
				 Posted: Thu Jun 11, 2009 1:21 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Nice find Norm.   
 
two w-wings will solve it also:
 
w-wing 34
 
w-wing 42 | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Marty R.
 
 
  Joined: 12 Feb 2006 Posts: 5770 Location: Rochester, NY, USA
  | 
		
			
				 Posted: Mon Jun 15, 2009 3:45 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				| I started with a W-Wing on 34. Then the UR on 48 worked out just like a little Mixed W-Wing. In the grid shown, if r8c3 = 7 then r3c1 = 2 and the 2 is eliminated from r3c3. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		 |