| View previous topic :: View next topic | 
	
	
		| Author | Message | 
	
		| keith 
 
 
 Joined: 19 Sep 2005
 Posts: 3355
 Location: near Detroit, Michigan, USA
 
 | 
			
				|  Posted: Sun Oct 18, 2009 3:48 pm    Post subject: Another Menneske, with a tough first step! |   |  
				| 
 |  
				|  	  | Code: |  	  | Puzzle: M6798876sh(17) +-------+-------+-------+
 | . . . | . 8 5 | 7 . . |
 | . . . | . . . | . . . |
 | . 3 9 | 6 . . | . 4 . |
 +-------+-------+-------+
 | . 6 . | . . . | . 3 . |
 | 5 . . | . . . | 2 . . |
 | 3 9 . | . 7 . | . . 4 |
 +-------+-------+-------+
 | . 2 . | . . 3 | . . . |
 | . . . | 7 . . | . 1 9 |
 | 6 . 8 | . . 4 | . . 5 |
 +-------+-------+-------+
 | 
 Keith
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| Marty R. 
 
 
 Joined: 12 Feb 2006
 Posts: 5770
 Location: Rochester, NY, USA
 
 | 
			
				|  Posted: Sun Oct 18, 2009 8:23 pm    Post subject: |   |  
				| 
 |  
				| Two steps. 
 
  	  | Quote: |  	  | Finned X-Wing on 8 exposed a W-Wing on 12. The latter created locked candidates on 1 which finished it off | 
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| keith 
 
 
 Joined: 19 Sep 2005
 Posts: 3355
 Location: near Detroit, Michigan, USA
 
 | 
			
				|  Posted: Sun Oct 18, 2009 8:36 pm    Post subject: |   |  
				| 
 |  
				|  	  | Marty R. wrote: |  	  | Two steps. 
 
  	  | Quote: |  	  | Finned X-Wing on 8 exposed a W-Wing on 12. The latter created locked candidates on 1 which finished it off | 
 | 
 
 This is from Multi-step Marty
    My solution is much more complicated! Keith
    |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| keith 
 
 
 Joined: 19 Sep 2005
 Posts: 3355
 Location: near Detroit, Michigan, USA
 
 | 
			
				|  Posted: Sun Oct 18, 2009 8:43 pm    Post subject: |   |  
				| 
 |  
				| Marty, 
 That is very elegant!
 
 Keith
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| DonM 
 
 
 Joined: 15 Sep 2009
 Posts: 51
 
 
 | 
			
				|  Posted: Sun Oct 18, 2009 9:30 pm    Post subject: |   |  
				| 
 |  
				| Keith, what is the starting point for this 1st step? Is it the SSTS position? There are the usual singles and whatnot from the position above. |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| keith 
 
 
 Joined: 19 Sep 2005
 Posts: 3355
 Location: near Detroit, Michigan, USA
 
 | 
			
				|  Posted: Mon Oct 19, 2009 12:39 am    Post subject: |   |  
				| 
 |  
				| Don, 
 After basics, I get here:
 By first step, I meant, after basics. 	  | Code: |  	  | +-------------------+-------------------+-------------------+ | 12    14    6     | 1234  8     5     | 7     9     123   |
 | 1278  148   5     | 12349 12349 1279  | 168   68    12368 |
 | 1278  3     9     | 6     12    127   | 5     4     128   |
 +-------------------+-------------------+-------------------+
 | 18    6     47    | 12458 1245  128   | 9     3     178   |
 | 5     18    47    | 13489 13469 1689  | 2     678   1678  |
 | 3     9     2     | 18    7     168   | 168   5     4     |
 +-------------------+-------------------+-------------------+
 | 9     2     1     | 58    56    3     | 4     678   678   |
 | 4     5     3     | 7     26    268   | 68    1     9     |
 | 6     7     8     | 19    19    4     | 3     2     5     |
 +-------------------+-------------------+-------------------+
 | 
 
 I will post my solution in a few minutes.
 
 Keith
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| Marty R. 
 
 
 Joined: 12 Feb 2006
 Posts: 5770
 Location: Rochester, NY, USA
 
 | 
			
				|  Posted: Mon Oct 19, 2009 12:42 am    Post subject: |   |  
				| 
 |  
				|  	  | Quote: |  	  | That is very elegant! | 
 Thank you. Keep in mind the old saying, "Even a blind pig finds an acorn once in a while."
  |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| keith 
 
 
 Joined: 19 Sep 2005
 Posts: 3355
 Location: near Detroit, Michigan, USA
 
 | 
			
				|  Posted: Mon Oct 19, 2009 1:05 am    Post subject: |   |  
				| 
 |  
				|  	  | Code: |  	  | +-------------------+-------------------+-------------------+ | 12    14    6     |-1234  8     5     | 7     9     123   |
 | 1278  148   5     |-12349 -1-2349 1279| 168   68    12368 |
 | 1278  3     9     | 6     12a   127   | 5     4     128   |
 +-------------------+-------------------+-------------------+
 | 18    6     47    |-1245-8 -1-245 128 | 9     3     178   |
 | 5     18    47    |-134-89 -134-69 1689| 2     678   1678  |
 | 3     9     2     | 18d   7     168   | 168   5     4     |
 +-------------------+-------------------+-------------------+
 | 9     2     1     | 58e   56e   3     | 4     678   678   |
 | 4     5     3     | 7     26f   2-68  | 68    1     9     |
 | 6     7     8     | 19c   19b   4     | 3     2     5     |
 +-------------------+-------------------+-------------------+
 | 
 abcdef..a is an XY-loop.  a and f are pincers of an XY-chain, but since they are in the same house, they make a reversible loop.  Any two adjacent cells in the chain are pincers in their common candidate.  Therefore, you can make the eliminations shown.
 
 Maybe my notation in the diagram is not entirely correct, but it should show:
 
  	  | Quote: |  	  | One of R3C5 and R8C5 must be <2>.
 One of R8C5 and R7C5 must be <6>.
 One of R7C5 and R7C4 must be <5>.
 One of R7C4 and R6C4 must be <8>.
 One of R6C4 and R9C4 must be <1>.
 One of R9C4 and R9C5 must be <9>.
 One of R9C5 and R3C5 must be <1>.
 
 Thus:
 
 R2C5 - cannot contain <2> because of R3C5 and R8C5.
 R4C5 - cannot contain <2> because of R3C5 and R8C5.
 R8C6 - cannot contain <6> because of R8C5 and R7C5.
 R5C5 - cannot contain <6> because of R8C5 and R7C5.
 R4C4 - cannot contain <8> because of R7C4 and R6C4.
 R5C4 - cannot contain <8> because of R7C4 and R6C4.
 R1C4 - cannot contain <1> because of R6C4 and R9C4.
 R2C4 - cannot contain <1> because of R6C4 and R9C4.
 R4C4 - cannot contain <1> because of R6C4 and R9C4.
 R5C4 - cannot contain <1> because of R6C4 and R9C4.
 R2C5 - cannot contain <1> because of R9C5 and R3C5.
 R4C5 - cannot contain <1> because of R9C5 and R3C5.
 R5C5 - cannot contain <1> because of R9C5 and R3C5.
 
 
 | 
 Leading to here:
 which still has a few advanced steps to a solution. 	  | Code: |  	  | +-------------------+-------------------+-------------------+ | 12    14    6     | 234   8     5     | 7     9     123   |
 | 1278  148   5     | 2349  349   1279  | 168   68    12368 |
 | 1278  3     9     | 6     12    127   | 5     4     128   |
 +-------------------+-------------------+-------------------+
 | 18    6     47    | 245   45    128   | 9     3     178   |
 | 5     18    47    | 349   349   1689  | 2     678   1678  |
 | 3     9     2     | 18    7     168   | 168   5     4     |
 +-------------------+-------------------+-------------------+
 | 9     2     1     | 58    56    3     | 4     678   678   |
 | 4     5     3     | 7     26    28    | 68    1     9     |
 | 6     7     8     | 19    19    4     | 3     2     5     |
 +-------------------+-------------------+-------------------+
 | 
 
 What amazes me is that Marty's finned 8 X-wing is still in the above grid, and is a completely different path.  Here it is:
  	  | Code: |  	  | +-------------------+-------------------+-------------------+ | 12    14    6     | 234   8     5     | 7     9     123   |
 | 1278  148   5     | 2349  349   1279  | 168   68    12368 |
 | 1278  3     9     | 6     12    127   | 5     4     128   |
 +-------------------+-------------------+-------------------+
 | 18    6     47    | 245   45    12-8  | 9     3     178   |
 | 5     18    47    | 349   349   16-89 | 2     678   1678  |
 | 3     9     2     | 18#   7     168@  | 168@  5     4     |
 +-------------------+-------------------+-------------------+
 | 9     2     1     | 58    56    3     | 4     678   678   |
 | 4     5     3     | 7     26    28@   | 68@   1     9     |
 | 6     7     8     | 19    19    4     | 3     2     5     |
 +-------------------+-------------------+-------------------+
 | 
 Either the X-wing @ is true, or # is true.  Either way, R45C6 cannot be 8.
 
 Keith
 
 Last edited by keith on Mon Oct 19, 2009 1:07 am; edited 1 time in total
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| keith 
 
 
 Joined: 19 Sep 2005
 Posts: 3355
 Location: near Detroit, Michigan, USA
 
 | 
			
				|  Posted: Mon Oct 19, 2009 1:06 am    Post subject: |   |  
				| 
 |  
				|  	  | Marty R. wrote: |  	  |  	  | Quote: |  	  | That is very elegant! | 
 Thank you. Keep in mind the old saying, "Even a blind pig finds an acorn once in a while."
  | 
 In this case, more like a truffle!
 
 Keith
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| daj95376 
 
 
 Joined: 23 Aug 2008
 Posts: 3854
 
 
 | 
			
				|  Posted: Mon Oct 19, 2009 1:59 am    Post subject: |   |  
				| 
 |  
				| After basics and Marty's excellent finned X-Wing, there's his W-Wing and this XY-Chain: 
 
  	  | Code: |  	  | XY-Chain a-b-c-d-e +-----------------------------------------------------------------------+
 |  12     14     6      |  1234   8      5      |  7      9      123    |
 |  1278   148    5      |  12349  12349  1279   |  168    68     12368  |
 |  1278   3      9      |  6      12     127    |  5      4      128    |
 |-----------------------+-----------------------+-----------------------|
 |  18     6      47     |  12458  145-2 a12     |  9      3      178    |
 |  5      18     47     |  13489  13469  169    |  2      678    167    |
 |  3      9      2      | b18     7      168    |  168    5      4      |
 |-----------------------+-----------------------+-----------------------|
 |  9      2      1      | c58    d56     3      |  4      678    678    |
 |  4      5      3      |  7     e26     68-2   |  68     1      9      |
 |  6      7      8      |  19     19     4      |  3      2      5      |
 +-----------------------------------------------------------------------+
 # 83 eliminations remain
 | 
 In addition, there's the shortest SIN (Single Implication Network) that I recall seeing in some time:
 
 
  	  | Code: |  	  | [r4c6]=1 /                   \
 [r8c6]=2 =>                       contradiction; => [r8c6]<>2
 \                   /
 [r6c6]=8 [r6c4]=1
 +-----------------------------------------------------------------------+
 |  12     14     6      |  1234   8      5      |  7      9      123    |
 |  1278   148    5      |  12349  12349  1279   |  168    68     12368  |
 |  1278   3      9      |  6      12     127    |  5      4      128    |
 |-----------------------+-----------------------+-----------------------|
 |  18     6      47     |  12458  1245   12     |  9      3      178    |
 |  5      18     47     |  13489  13469  169    |  2      678    167    |
 |  3      9      2      |  18     7      168    |  168    5      4      |
 |-----------------------+-----------------------+-----------------------|
 |  9      2      1      |  58     56     3      |  4      678    678    |
 |  4      5      3      |  7      26     268    |  68     1      9      |
 |  6      7      8      |  19     19     4      |  3      2      5      |
 +-----------------------------------------------------------------------+
 # 83 eliminations remain
 
 | 
 Yes, it can be represented as a short chain, but the simplicity is lost.
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| DonM 
 
 
 Joined: 15 Sep 2009
 Posts: 51
 
 
 | 
			
				|  Posted: Mon Oct 19, 2009 10:47 pm    Post subject: |   |  
				| 
 |  
				|  	  | Code: |  	  | +-------------------+-------------------+-------------------+ | 12    14    6     | 1234  8     5     | 7     9     123   |
 | 1278  148   5     | 12349 12349 1279  | 168   68    12368 |
 | 1278  3     9     | 6     12    127   | 5     4     128   |
 +-------------------+-------------------+-------------------+
 | 18    6     47    | 12458 1245  128   | 9     3     178   |
 | 5     18    47    | 13489 13469 1689  | 2     678   1678  |
 | 3     9     2     | 18    7     168   | 168   5     4     |
 +-------------------+-------------------+-------------------+
 | 9     2     1     | 58    56    3     | 4     678   678   |
 | 4     5     3     | 7     26    268   | 68    1     9     |
 | 6     7     8     | 19    19    4     | 3     2     5     |
 +-------------------+-------------------+-------------------+
 | 
 
 Here's a 2-step pattern-solving ALS-chain alternative (rc=restricted common):
 
 Step 1: Dual-linked ALS:
 Set A(1589)r679c4 -> rc5 & rc9 -> Set B(12569)r3789c5
 
 Elims: 1 in r1245c4, 1 in r245c5, 8 in r45c4, 2 in r24c5, 6 in r5c5
 
 Step 2: 3-set ALS chain:
 Set A(123489)r12569c4 -> rc2 -> Set B(123459)r23459c5 -> rc5 -> Set C(2568)r7c5/r8c56
 
 Thus: r7c4<>8=5
 stte
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| tlanglet 
 
 
 Joined: 17 Oct 2007
 Posts: 2468
 Location: Northern California Foothills
 
 | 
			
				|  Posted: Thu Oct 22, 2009 1:14 am    Post subject: |   |  
				| 
 |  
				|  	  | Marty R. wrote: |  	  | Two steps. 
 
  	  | Quote: |  	  | Finned X-Wing on 8 exposed a W-Wing on 12. The latter created locked candidates on 1 which finished it off | 
 | 
 
 Great move Marty! I love to see those finned and Kraken solutions.
 
 Ted
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		|  |