| View previous topic :: View next topic   | 
	
	
	
		| Author | 
		Message | 
	
	
		keith
 
 
  Joined: 19 Sep 2005 Posts: 3355 Location: near Detroit, Michigan, USA
  | 
		
			
				 Posted: Sat Sep 15, 2007 11:40 am    Post subject: DB Saturday Puzzle:  September 15, 2007 | 
				     | 
			 
			
				
  | 
			 
			
				I have not yet completed it ...
 
 	  | Code: | 	 		  Puzzle: DB091507  ******
 
+-------+-------+-------+
 
| . . . | . . . | . 5 . | 
 
| . 2 7 | . . . | 3 . 4 | 
 
| . 5 . | . . 3 | 1 9 7 | 
 
+-------+-------+-------+
 
| . . 1 | 2 . 4 | . . . | 
 
| 4 7 . | . . . | . 2 8 | 
 
| . . . | 8 . 9 | 7 . . | 
 
+-------+-------+-------+
 
| 5 4 6 | 3 . . | . 1 . | 
 
| 7 . 3 | . . . | 5 6 . | 
 
| . 9 . | . . . | . . . | 
 
+-------+-------+-------+
 
 | 	  Keith | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Earl
 
 
  Joined: 30 May 2007 Posts: 677 Location: Victoria, KS
  | 
		
			
				 Posted: Sat Sep 15, 2007 3:12 pm    Post subject: DB Saturday Sept 15 | 
				     | 
			 
			
				
  | 
			 
			
				I's stuck here.  Help!
 
 
Earl
 
 
 
 
 *-----------------------------------------------------------*
 
 | 139   13    49    | 7     148     18      | 2      5     6    |
 
 | 16     2       7    | 9     156    156     | 3      8     4    |
 
 | 68     5     48    | 46    2         3       | 1     9     7     |
 
 |-------------------+-------------------+-------------------|
 
 | 89    68     1     | 2         7         4   | 69    3      5    |
 
 | 4       7     59    | 156     3     156    | 69     2     8    |
 
 | 23    36    25    | 8       56         9    | 7      4     1     |
 
 |-------------------+-------------------+-------------------|
 
 | 5       4     6     |    3       9         7  | 8      1     2     |
 
 | 7     18     3      | 14     148        2  | 5      6     9     |
 
 | 12    9     28     | 156   1568  1568  | 4      7     3     |
 
 *-----------------------------------------------------------* | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		TKiel
 
 
  Joined: 22 Feb 2006 Posts: 292 Location: Kalamazoo, MI
  | 
		
			
				 Posted: Sat Sep 15, 2007 3:58 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				From earl's position there is an extended XY-wing with <13> pivot in r1c2 that excludes 8 from r4c1.
 
 
(Edit:  Sorry about the wrong cell reference.)
  Last edited by TKiel on Sat Sep 15, 2007 10:26 pm; edited 3 times in total | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Marty R.
 
 
  Joined: 12 Feb 2006 Posts: 5770 Location: Rochester, NY, USA
  | 
		
			
				 Posted: Sat Sep 15, 2007 4:00 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Earl's grid:
 
 
 	  | Code: | 	 		  ---------------------------------------
 
| 139 13  49 | 7   148  18   | 2  5 6 |
 
| 16  2   7  | 9   156  156  | 3  8 4 |
 
| 68  5   48 | 46  2    3    | 1  9 7 |
 
|--------------------------------------
 
| 89  68  1  | 2   7    4    | 69 3 5 |
 
| 4   7   59 | 156 3    156  | 69 2 8 |
 
| 23  36  25 | 8   56   9    | 7  4 1 |
 
|-------------------------------------
 
| 5   4   6  | 3   9    7    | 8  1 2 |
 
| 7   18  3  | 14  148  2    | 5  6 9 |
 
| 12  9   28 | 156 1568 1568 | 4  7 3 |
 
--------------------------------------- | 	  
 
 
Two XY-Chains and a W-Wing did it for me.
 
 
 	  | Quote: | 	 		  | From earls; position there is an extended XY-wing (<13> pivot in r1c3 that excludes 8 from r4c1 | 	  
 
 
Tracy, I guess you mean r1c2. I'm not seeing how an extension works here. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Johan
 
 
  Joined: 25 Jun 2007 Posts: 206 Location: Bornem  Belgium
  | 
		
			
				 Posted: Sat Sep 15, 2007 5:21 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				| From Earl's grid there is a 5-cell xy-chain that eliminates <8> in R4C1 | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		TKiel
 
 
  Joined: 22 Feb 2006 Posts: 292 Location: Kalamazoo, MI
  | 
		
			
				 Posted: Sat Sep 15, 2007 9:25 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				| XY-wing with pivot in r1c2 <13>, pincers at r2c1 <16> and r6c2 <36>.  R2c1 extends to r3c1 <68>, r6c2 extends to r4c2 <68>.  Probably same XY-chain used by Johan. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Marty R.
 
 
  Joined: 12 Feb 2006 Posts: 5770 Location: Rochester, NY, USA
  | 
		
			
				 Posted: Sat Sep 15, 2007 10:04 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | TKiel wrote: | 	 		  | XY-wing with pivot in r1c2 <13>, pincers at r2c1 <16> and r6c2 <36>.  R2c1 extends to r3c1 <68>, r6c2 extends to r4c2 <68>.  Probably same XY-chain used by Johan. | 	  
 
 
In my perpetual state of confusion, I confused Extended XY-Wing with that thing you posted about a couple of days ago, which I seem to recall was an XY-Wing and you called it W-Wing with Coloring, or something like that, but it involved a three-cell chain starting with one of the pincer cells. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Ruud
 
 
  Joined: 18 Jan 2006 Posts: 31
 
  | 
		
			
				 Posted: Sat Sep 15, 2007 10:28 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				It would be interesting to know how earl eliminated 8 from r9c1. The best move I could find is a Sue-De-Coq on box 1 and column 1. A rare, but beautiful move.
 
 
Ruud | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Johan
 
 
  Joined: 25 Jun 2007 Posts: 206 Location: Bornem  Belgium
  | 
		
			
				 Posted: Sat Sep 15, 2007 10:35 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				The 5-cell xy-chain could also be defined like Tracy said as an extended xy-wing.
 
But you can also define the xy-wing as a short 3-cell xy-chain, either both ways uses the pincer-cells effect, to eliminate a candidate that can be seen by both cells.
 
 
The 5-cell xy-chain, which erases <8> in R4C1, starting with <6> in R3C1.
 
 
[86][61][13][36][68]
 
 
 
 
 
 
 	  | Code: | 	 		  +-----------+---------------+--------+
 
|139 C13 49 | 7   148  18   | 2  5 6 |
 
|B16  2  7  | 9   156  156  | 3  8 4 |
 
|A68  5  48 | 46  2    3    | 1  9 7 |
 
+-----------+---------------+--------+
 
|-89 E68 1  | 2   7    4    | 69 3 5 |
 
| 4   7  59 | 156 3    156  | 69 2 8 |
 
| 23 D36 25 | 8   56   9    | 7  4 1 |
 
+-----------+---------------+--------+
 
| 5   4  6  | 3   9    7    | 8  1 2 |
 
| 7   18 3  | 14  148  2    | 5  6 9 |
 
| 128 9  28 | 156 1568 1568 | 4  7 3 |
 
+-----------+---------------+--------+
 
 
 | 	 
  | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		TKiel
 
 
  Joined: 22 Feb 2006 Posts: 292 Location: Kalamazoo, MI
  | 
		
			
				 Posted: Sat Sep 15, 2007 10:43 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Ruud,
 
 
  I'm not sure how earl did it, but there is a lowly old XY-chain that does it.
 
 
<82><25><56><63><31><18> (forgive my improper notation). | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Earl
 
 
  Joined: 30 May 2007 Posts: 677 Location: Victoria, KS
  | 
		
			
				 Posted: Sun Sep 16, 2007 1:20 am    Post subject: DB puzzle Sept 15 | 
				     | 
			 
			
				
  | 
			 
			
				I used the (8) pincers of R3C1 and R8C2 (by an xy-chain 1-4-6-8) to eliminate 8 from R9C1.  But I failed to see the xy-chain from R3C1 to R4C2 (6-1-3-6-8) that eliminates 8 from R4C1 and solves the puzzle.
 
 
Earl
 
 
(Edited by keith to disable smilies) | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		keith
 
 
  Joined: 19 Sep 2005 Posts: 3355 Location: near Detroit, Michigan, USA
  | 
		
			
				 Posted: Sun Sep 16, 2007 8:39 pm    Post subject: What is this called? | 
				     | 
			 
			
				
  | 
			 
			
				I've been away for the weekend, driving by Tracy's town, to Chicago and back.  I apologize if this has been covered.  This is the pinch point:
 
 	  | Code: | 	 		  +----------------+----------------+----------------+
 
| 139  13   49   | 7    148  18   | 2    5    6    | 
 
| 16   2    7    | 9    156  156  | 3    8    4    | 
 
| 68   5    48   | 46   2    3    | 1    9    7    | 
 
+----------------+----------------+----------------+
 
| 89   68   1    | 2    7    4    | 69   3    5    | 
 
| 4    7    59   | 156  3    156  | 69   2    8    | 
 
| 23   36   25   | 8    56   9    | 7    4    1    | 
 
+----------------+----------------+----------------+
 
| 5    4    6    | 3    9    7    | 8    1    2    | 
 
| 7    18   3    | 14   148  2    | 5    6    9    | 
 
| 128  9    28   | 156  1568 1568 | 4    7    3    | 
 
+----------------+----------------+----------------+
 
 | 	  The shortest chain seems to be in the rectangle R18C25.  Sudoku Susser says:
 
 	  | Code: | 	 		  Found a 4-link Comprehensive Chain.  If we assume that square R1C5 is <1> then we can make the following chain of conclusions:
 
 
   R8C5 must be <4> (C5 pin), which means that
 
   R8C2 must be <8> (R8 pin), which means that
 
   R1C2 must be <1> (C2 pin), which means that
 
   R1C5 can't be <1> (buddy contradiction).
 
 
Since this is logically inconsistent, R1C5 cannot be <1>.
 
 | 	  What would you experts call this chain?
 
 
Keith | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Asellus
 
 
  Joined: 05 Jun 2007 Posts: 865 Location: Sonoma County, CA, USA
  | 
		
			
				 Posted: Mon Sep 17, 2007 12:50 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				I'd call it an AIC (Alternate Implication Chain) that uses end-to-end strong ("conjugate") links.  In Eureka notation it can be written:
 
 
[1-4]R1C5=[4-8]R8C5=[8-1]R8C2=[1]R1C2-[1]R1C5; R1C5<>1
 
 
The three links are 4=4 in C5, 8=8 in R8, and 1=1 in C2. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Asellus
 
 
  Joined: 05 Jun 2007 Posts: 865 Location: Sonoma County, CA, USA
  | 
		
			
				 Posted: Mon Sep 17, 2007 1:08 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Medusa coloring easily produces an interesting result with Keith's grid:
 
 	  | Code: | 	 		  +-----------------+----------------+----------------+ 
 
|#13r9r 1r3g 49   | 7    148  18   | 2    5    6    | 
 
| 16    2    7    | 9    156  156  | 3    8    4    | 
 
| 68    5    48   | 46   2    3    | 1    9    7    | 
 
+-----------------+----------------+----------------+ 
 
| 8r9g  6r8g 1    | 2    7    4    | 69   3    5    | 
 
| 4     7    59   | 156  3    156  | 69   2    8    | 
 
| 23    3r6g 25   | 8    56   9    | 7    4    1    | 
 
+-----------------+----------------+----------------+ 
 
| 5     4    6    | 3    9    7    | 8    1    2    | 
 
| 7     18   3    | 14   148  2    | 5    6    9    | 
 
| 128   9    28   | 156  1568 1568 | 4    7    3    | 
 
+-----------------+----------------+----------------+ | 	  
 
We quickly get two "red" values in R1C1, which is not possible.  So all the "r" values are eliminated (a "Medusa Wrap") and the puzzle is solved. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		 |