| View previous topic :: View next topic | 
	
	
		| Author | Message | 
	
		| storm_norm 
 
 
 Joined: 18 Oct 2007
 Posts: 1741
 
 
 | 
			
				|  Posted: Fri Mar 06, 2009 7:30 am    Post subject: mm 1335 3/6/09 diabolical |   |  
				| 
 |  
				|  	  | Code: |  	  | +-------+-------+-------+
 | 1 9 . | . 7 . | . . 2 |
 | 8 5 7 | . . . | . . 6 |
 | . . . | . 4 8 | . . . |
 +-------+-------+-------+
 | . . . | . . 5 | . 2 . |
 | 2 . . | . . . | . . 5 |
 | . 3 . | 2 . . | 1 . . |
 +-------+-------+-------+
 | . . . | 7 6 . | . . . |
 | 9 . . | . . . | . 3 8 |
 | 7 . . | . 8 . | . 6 1 |
 +-------+-------+-------+
 
 | 
 Play this puzzle online at the Daily Sudoku site
 I'd say this is the hardest MM puzzle I seen so far.
 ----
 
 after a couple rounds in the ring.
 two steps.
 
  	  | Code: |  	  | .---------------------.---------------------.---------------------. | 1      9      4     | 356    7      36    | 358    58     2     |
 | 8      5      7     | 139    2      139   | 349    149    6     |
 | 36     26     236   | 159    4      8     | 59     1579   79    |
 :---------------------+---------------------+---------------------:
 | 46     7      689   | 468    1      5     | 4689   2      3     |
 | 2      1468   1689  | 468    3      467   | 4689   4789   5     |
 | 456    3      568   | 2      9      467   | 1      478    47    |
 :---------------------+---------------------+---------------------:
 | 345    1248   12358 | 7      6      12349 | 2459   459    49    |
 | 9      1246   126   | 14     5      124   | 7      3      8     |
 | 7      24     235   | 349    8      2349  | 2459   6      1     |
 '---------------------'---------------------'---------------------'
 | 
 (9)r7c9 = (9)r3c9 - (9=5)r3c7 - (5)r7c9 = (5)r7c8; r7c8 <> 9
 
 that newly opened {4,5} cell in r7c8 can be used
 
 (5=4)r7c8 - (4)r2c8 = (4-3)r2c7 = (3-8)r1c7 = (8)r1c8; r1c8 <> 5
 singles follow.
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| Asellus 
 
 
 Joined: 05 Jun 2007
 Posts: 865
 Location: Sonoma County, CA, USA
 
 | 
			
				|  Posted: Fri Mar 06, 2009 11:02 am    Post subject: |   |  
				| 
 |  
				| Norm, 
 I can't follow this bit: (5)r7c9 = (5)r7c8
 
 You must have meant the grouped link: (5)r13c8=(5)r7c8
 Eh?
 
 Congrats on the short solution path!  The puzzle did not yield so easily for me.  I used several long (but interesting) AICs, including one continuous loop and one strong link discontinuity loop.
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| daj95376 
 
 
 Joined: 23 Aug 2008
 Posts: 3854
 
 
 | 
			
				|  Posted: Fri Mar 06, 2009 3:36 pm    Post subject: |   |  
				| 
 |  
				|  	  | Asellus wrote: |  	  | You must have meant the grouped link: (5)r13c8=(5)r7c8 Eh?
 
 | 
 Or the grouped link (5)r79c7=(5)r7c8.
 
 Yes, congrats on breaking this contrary puzzle.
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| storm_norm 
 
 
 Joined: 18 Oct 2007
 Posts: 1741
 
 
 | 
			
				|  Posted: Fri Mar 06, 2009 6:23 pm    Post subject: |   |  
				| 
 |  
				|  	  | Quote: |  	  | You must have meant the grouped link: (5)r13c8=(5)r7c8 Eh?
 | 
 
 
  	  | Quote: |  	  | Or the grouped link (5)r79c7=(5)r7c8. | 
 
 yes, the grouped link
   
 (5)r79c7 = (5)r7c8
 ----
 
 I have been keeping track of these "diabolicals" and I am not sure there is precedence for this difficulty, is there?
 so I am wondering if there is a move or pattern still in there.
 
 ----
 
  	  | Quote: |  	  | one continuous loop and one strong link discontinuity loop | 
 did one include the 4's ?
 if so I looked at the 4's for a long time.
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| Asellus 
 
 
 Joined: 05 Jun 2007
 Posts: 865
 Location: Sonoma County, CA, USA
 
 | 
			
				|  Posted: Sat Mar 07, 2009 5:47 am    Post subject: |   |  
				| 
 |  
				|  	  | Quote: |  	  | did one include the 4's ? | 
 Neither of those involved <4>s and I'm not now able to recreate the sequence of longish AICs I found last night.  However, I can see an interesting AIC "almost loop" involving <4>s:
 (4=7)r6c9 - (7=9)r3c9 - (9=5)r6c7 - (5=8)r1c8 - ALS[(8)r6c8=(4)r6c89]; r6c16|r5c78|r4c7<>4
 Notice how the grouped <4>s at one end of the AIC include the single <4> at the other end.  That's something one might overlook but is entirely valid.  We know that one of those two grouped <4>s must be true.
 
 We can now do the same thing with <5>s:
 (5=8)r1c8 - ALS[(8)r6c8=(7)r6c89] - (7=6)r6c6 - (6=3)r1c6 - ALS[(3)r1c7=(5)r1c78]; r1c4|r3c78<>5
 
 And, that solves the puzzle.
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		|  |