| View previous topic :: View next topic   | 
	
	
	
		| Author | 
		Message | 
	
	
		keith
 
 
  Joined: 19 Sep 2005 Posts: 3355 Location: near Detroit, Michigan, USA
  | 
		
			
				 Posted: Fri Sep 30, 2011 9:00 pm    Post subject: Free Press Sep 30, 2011 | 
				     | 
			 
			
				
  | 
			 
			
				May be many steps ...
 
 	  | Code: | 	 		  Puzzle: FP093011
 
+-------+-------+-------+
 
| 6 . . | 2 3 . | . . 8 |
 
| . . . | 5 . . | . . . |
 
| 3 5 . | 8 . 7 | . . 2 |
 
+-------+-------+-------+
 
| . . 8 | . . . | . 3 . |
 
| 5 . 3 | . . . | 2 . 6 |
 
| . 9 . | . . . | 8 . . |
 
+-------+-------+-------+
 
| . . . | 1 . 9 | . 7 5 |
 
| . . . | . . 4 | . . . |
 
| . . . | . 7 5 | . . 3 |
 
+-------+-------+-------+
 
 | 	  
 
Play this puzzle online at the Daily Sudoku site
 
 
Keith | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Marty R.
 
 
  Joined: 12 Feb 2006 Posts: 5770 Location: Rochester, NY, USA
  | 
		
			
				 Posted: Fri Sep 30, 2011 11:26 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				OK, I hope I didn't screw this up. ABCDEFGH are a potential DP on 28. R7c1=4 or r2c1=149, which combines with other cells in that box to form a 1479 quad. Several cells are a common outcome, solving the puzzle.
 
 
 	  | Code: | 	 		  +-------------------+-----------+---------------+
 
| 6      47   479   |2   3    1 | 57  459  8    |
 
| 12489A 28B  12479 |5   49   6 | 3   149  1479 |
 
| 3      5    149   |8   49   7 | 19  6    2    |
 
+-------------------+-----------+---------------+
 
| 14     16   8     |479 56   2 | 57  3    1479 |
 
| 5      47   3     |479 1    8 | 2   49   6    |
 
| 124    9    12467 |47  56   3 | 8   145  147  |
 
+-------------------+-----------+---------------+
 
| 248C   3    246   |1   28D  9 | 46  7    5    |
 
| 7      16   5     |3   28E  4 | 169 28F  19   |
 
| 149    28G  149   |6   7    5 | 14  28H  3    |
 
+-------------------+-----------+---------------+  | 	 
  | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		keith
 
 
  Joined: 19 Sep 2005 Posts: 3355 Location: near Detroit, Michigan, USA
  | 
		
			
				 Posted: Sat Oct 01, 2011 1:10 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Marty,
 
 
Your DP is correct, but I do not see how it solves the puzzle.
 
 	  | Code: | 	 		  +-------------------+-------------------+-------------------+
 
| 6     47    479   | 2     3     1     | 57    459   8     | 
 
|28+149  28    12479 | 5     49    6     | 3     149   1479  | 
 
| 3     5     149   | 8     49    7     | 19    6     2     | 
 
+-------------------+-------------------+-------------------+
 
| 14a   16    8     | 479   56    2     | 57    3     1479  | 
 
| 5     47    3     | 479   1     8     | 2     49    6     | 
 
|2-14   9     12467 | 47    56    3     | 8     145   147   | 
 
+-------------------+-------------------+-------------------+
 
|28+4   3     246   | 1     28    9     | 46    7     5     | 
 
| 7     16    5     | 3     28    4     | 169   28    19    | 
 
| 149b  28    149   | 6     7     5     | 14    28    3     | 
 
+-------------------+-------------------+-------------------+ | 	  
 
Type 3:  To break the DP, there is a pseudocell 149 in R27C1. It makes a triple with ab, eliminating 14 in R6C1.  
 
 
Type 4:  One of R27C1 must be 8.  Neither can be 2.
 
 
Leaving me here:
 
 	  | Code: | 	 		  +-------------------+-------------------+-------------------+
 
| 6     47    479   | 2     3     1     | 57    459   8     | 
 
| 1489  28    12479 | 5     49    6     | 3     149   1479  | 
 
| 3     5     149   | 8     49    7     | 19    6     2     | 
 
+-------------------+-------------------+-------------------+
 
| 14    16    8     | 479   56    2     | 57    3     1479  | 
 
| 5     47    3     | 479   1     8     | 2     49    6     | 
 
| 2     9     1467  | 47    56    3     | 8     145   147   | 
 
+-------------------+-------------------+-------------------+
 
| 48    3     246   | 1     28    9     | 46    7     5     | 
 
| 7     16    5     | 3     28    4     | 169   28    19    | 
 
| 149   28    149   | 6     7     5     | 14    28    3     | 
 
+-------------------+-------------------+-------------------+ | 	  
 
Keith
 
 
Go, Tigers! | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Marty R.
 
 
  Joined: 12 Feb 2006 Posts: 5770 Location: Rochester, NY, USA
  | 
		
			
				 Posted: Sat Oct 01, 2011 1:46 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				| Keith, I'll look further later. However, I looked at the 149 in r2c1 as combining with other cells in that box to form a 1479 quad, setting r2c3=2. Carrying that further and comparing the results to what I got when I tried r7c1=4, yielded several common outcomes which solved it. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Marty R.
 
 
  Joined: 12 Feb 2006 Posts: 5770 Location: Rochester, NY, USA
  | 
		
			
				 Posted: Sat Oct 01, 2011 3:37 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Keith, I still get the same result. Common outcomes solve the puzzle.
 
 
I do appreciate the fact that you post these. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		keith
 
 
  Joined: 19 Sep 2005 Posts: 3355 Location: near Detroit, Michigan, USA
  | 
		
			
				 Posted: Sat Oct 01, 2011 9:38 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | Marty R. wrote: | 	 		  | Keith, I still get the same result. Common outcomes solve the puzzle. | 	  
 
Marty, I'll agree, for example, that 4 in R7C1 or 2 in R2C3 both drive 6 in R4C2, which solves the puzzle.
 
 
IMHO, something of a stretch.
 
 
Keith | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		keith
 
 
  Joined: 19 Sep 2005 Posts: 3355 Location: near Detroit, Michigan, USA
  | 
		
			
				 Posted: Sat Oct 01, 2011 10:41 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				After basics, an XYZ-wing takes out 9 in R1B8.  That sets up a W-wing -14 in B14 that takes out 1 in R2C1 and solves the puzzle.
 
 
Keith | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Marty R.
 
 
  Joined: 12 Feb 2006 Posts: 5770 Location: Rochester, NY, USA
  | 
		
			
				 Posted: Sat Oct 01, 2011 3:56 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | Quote: | 	 		  Marty, I'll agree, for example, that 4 in R7C1 or 2 in R2C3 both drive 6 in R4C2, which solves the puzzle.
 
 
IMHO, something of a stretch.  | 	  
 
I guess by a stretch, you mean that the chains get extended longer than you'd prefer before a common outcome is seen. 
 
 
As to the XYZ- and W-Wings, I never got that far, being fascinated by an eight-cell DP. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		ronk
 
 
  Joined: 07 May 2006 Posts: 398
 
  | 
		
			
				 Posted: Sat Oct 01, 2011 4:46 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | Marty R. wrote: | 	 		   	  | Quote: | 	 		  Marty, I'll agree, for example, that 4 in R7C1 or 2 in R2C3 both drive 6 in R4C2, which solves the puzzle.
 
 
IMHO, something of a stretch.  | 	  
 
I guess by a stretch, you mean that the chains get extended longer than you'd prefer before a common outcome is seen. | 	  
 
For that "stretch", did anyone have anything shorter than this?
 
 
(1=4)r4c1 - BUG-Lite:[(4)r7c1 = (2-7)r2c3] = (7)r2c9 - (7)r1c7 = (7-5)r4c7 = (5-6)r4c7 = (6)r4c2 ==> r4c2<>1 | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		arkietech
 
 
  Joined: 31 Jul 2008 Posts: 1834 Location: Northwest Arkansas USA
  | 
		
			
				 Posted: Sat Oct 01, 2011 6:24 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | ronk wrote: | 	 		  | (1=4)r4c1 - BUG-Lite:[(4)r7c1 = (2-7)r2c3] = (7)r2c9 - (7)r1c7 = (7-5)r4c7 = (5-6)r4c7 = (6)r4c2 ==> r4c2<>1 | 	  
 
 
Beautiful!    
 
 
shouldn't the (5-6)r4c7 be (5-6)r4c5?
 
 
Nice find. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		keith
 
 
  Joined: 19 Sep 2005 Posts: 3355 Location: near Detroit, Michigan, USA
  | 
		
			
				 Posted: Sat Oct 01, 2011 6:40 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | ronk wrote: | 	 		   	  | Marty R. wrote: | 	 		   	  | Quote: | 	 		  Marty, I'll agree, for example, that 4 in R7C1 or 2 in R2C3 both drive 6 in R4C2, which solves the puzzle.
 
 
IMHO, something of a stretch.  | 	  
 
I guess by a stretch, you mean that the chains get extended longer than you'd prefer before a common outcome is seen. | 	  
 
For that "stretch", did anyone have anything shorter than this?
 
 
(1=4)r4c1 - BUG-Lite:[(4)r7c1 = (2-7)r2c3] = (7)r2c9 - (7)r1c7 = (7-5)r4c7 = (5-6)r4c7 = (6)r4c2 ==> r4c2<>1 | 	  
 
Ron, I had:
 
 
a) R7C1=4; R4C1=1; R4C2=6.
 
b) R3C3=2; R2C9=7; R4C5=5; R4C2=6.
 
 
I think it's the same as yours.
 
 
Keith | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Marty R.
 
 
  Joined: 12 Feb 2006 Posts: 5770 Location: Rochester, NY, USA
  | 
		
			
				 Posted: Sat Oct 01, 2011 7:00 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Being notationally challenged, I have no idea of what Ron's chain is.
 
 
With the 1479 quad in box 1, r2c3=2-->r2c9=7-->r1c7=5
 
 
R7c1=4-->r4c1=1-->r4c2=6-->r4c5=5-->r4c7=7-->r1c7=5
 
 
R1c7=5 solves it. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		daj95376
 
 
  Joined: 23 Aug 2008 Posts: 3854
 
  | 
		
			
				 Posted: Sat Oct 01, 2011 10:04 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Aaaaagh!!! I just burned out half of my brain cells! Now there's only one left. _   _
 
 
 	  | Code: | 	 		   after basics
 
 +------------------------------------------------------------------------+
 
 |  6       47     479    |  2      3      1      |  57     459    8      |
 
 | *28+149 *28     12479  |  5      49     6      |  3      149    1479   |
 
 |  3       5      149    |  8      49     7      |  19     6      2      |
 
 |------------------------+-----------------------+-----------------------|
 
 |  14      16     8      |  479    56     2      |  57     3      1479   |
 
 |  5       47     3      |  479    1      8      |  2      49     6      |
 
 |  124     9      12467  |  47     56     3      |  8      145    147    |
 
 |------------------------+-----------------------+-----------------------|
 
 | *28+4    3      246    |  1     *28     9      |  46     7      5      |
 
 |  7       16     5      |  3     *28     4      |  169   *28     19     |
 
 |  149    *28     149    |  6      7      5      |  14    *28     3      |
 
 +------------------------------------------------------------------------+
 
 # 69 eliminations remain
 
 
(194)r2c1=DP=r7c1-(4=91)r9c13-r8c2=r4c2-(1=4)r4c1-r27c1=DP=(19)r2c1 => r2c1<>28
 
 | 	  
 
Yes, it would be simpler/smarter to derive r7c1<>4 first, and then derive r2c1<>28. But, no one seems to post simpler/smarter solutions anymore.
 
 
Marty: Thanks for spotting the DP!!! | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		ronk
 
 
  Joined: 07 May 2006 Posts: 398
 
  | 
		
			
				 Posted: Sun Oct 02, 2011 2:03 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | daj95376 wrote: | 	 		  (194)r2c1=DP=r7c1- (4=91)r9c13-r8c2=r4c2-(1=4)r4c1 -r27c1=DP=(19)r2c1 => r2c1<>28
 
...
 
Yes, it would be simpler/smarter to derive r7c1<>4 first, and then derive r2c1<>28. But, no one seems to post simpler/smarter solutions anymore. | 	  
 
r7c1<>4 is what you did (in blue).   | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		daj95376
 
 
  Joined: 23 Aug 2008 Posts: 3854
 
  | 
		
			
				 Posted: Sun Oct 02, 2011 3:36 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | ronk wrote: | 	 		  r7c1<>4 is what you did.
 
 | 	  
 
Almost. r7c1<>4 is what I could/should have done for a two-stepper.
 
 
 	  | Code: | 	 		  (4=91)r9c13-(1=6)r8c2-(6=1)r4c2-(1=4)r4c1 => r7c1<>4
 
 
DP on <28> => r2c1=149 => r2c1<>28
 
 | 	  
 
Instead, I created a messy single-stepper. _   _ | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		 |